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Anomalous diffusion in infinite horizon billiards
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We consider the long time dependence for the moments of displacement^ur uq& of infinite horizon billiards,
given a bounded initial distribution of particles. For a variety of billiard models we find^ur uq&;tgq ~up to
factors of lnt). The time exponent,gq , is piecewise linear and equal toq/2 for q,2 andq21 for q.2. We
discuss the lack of dependence of this result on the initial distribution of particles and resolve apparent
discrepancies between this time dependence and a prior result. The lack of dependence on initial distribution
follows from a remarkable scaling result that we obtain for the time evolution of the distribution function of the
angle of a particle’s velocity vector.
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I. INTRODUCTION

Diffusion of particles in an infinite domain billiard is
well studied problem@1–7#. By a billiard we refer to the
motion of a point particle in a two-dimensional domain
which the particle moves with constant velocity in straig
line orbits executing specular reflection~i.e., angle of inci-
dence equals angle of reflection! from fixed boundaries. By
an infinite domain we refer to an unbounded tw
dimensional region. An early consideration of diffusion in
billiard as a model in physics was made by Lorentz@1# to
model electrons in a metal. In this model~called the Lorentz
gas! particles move freely and reflect specularly from fixe
randomly placed, hard-wall scatterers. A modification of
two-dimensional Lorentz gas in which there are circular sc
terers on a square lattice is an example of an infinite hori
billiard, called the Sinai billiard@5#, and is illustrated in Fig.
1~a!. Infinite horizon billiards are the subset of infinite d
main billiards that contain channels through which a parti
may pass without ever reflecting off a billiard wall. In th
paper we consider diffusion in infinite horizon billiards. Th
examples that we study numerically are shown in Figs. 1~a!–
1~d!. The billiards in Fig. 1 include:~a! the Sinai billiard,
composed of circular, hard-wall scatterers arranged o
square lattice such that the scatterers do not touch each o
~b! a modification of model~a! in which the circular scatter
ers are randomly displaced~random in direction and magni
tude! by at mostD,L/22R, so that there are channels
width L22(R1D) accommodating free motion;~c! ran-
domly oriented square scatterers on a square lattice; an~d!
the scalloped channel, in which the domain is infinite in t
y direction and bounded in thex direction by circular arc
segments, each subtending an angle less than or equ
180°. Figure 1~d1! shows the case of the scalloped chan
where the circular arc segments are semicircles, while
1~d2! shows the case where the arcs subtend an angle
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than 180°. Particle motion for the situation in Fig. 1~d1! is
equivalent to particle motion for a stadium-type billiard@see
Fig. 2~a!#; the particle motion within the scalloped chann
can be folded into the stadium billiard via reflection of th
particle at a straight wall as it passes to the next cell. By c
we mean each portion of the scalloped channel domain
tween the dotted lines of Fig. 1~d!. In a similar manner, par-
ticle motion in the bounded billiard of Fig. 2~b! can be
thought of as equivalent to motion in the infinite billiard o
Fig. 1~a!. One important means of characterizing transpor
an infinite domain two-dimensional billiard is through th
phase space probability distribution function~pdf!,
P(x,y,u,t), whereu is the angle of the particle velocity an
we take all particle velocities to have magnitude 1. From
pdf one can calculate the displacement moments of the

FIG. 1. The four infinite horizon billiard structures that we co
sider include~a! the Sinai billiard such that the channel widthW
5L22R.0; ~b! the Sinai billiard with random displacementsD
away from the square matrix such thatW5L22(R1D).0; ~c!
randomly oriented squares such thatW5L2A2d.0; ~d! scalloped
channel with~d1! semicircular arcs and~d2! arcs subtending an
angle less than 180°.
©2003 The American Physical Society10-1
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tribution. Theqth moment at timet is

^r q&5^~x21y2!q/2&

5E
0

2pE
R

~x21y2!q/2P~x,y,u,t !dxdy
du

2p
, ~1!

wherer 5Ax21y2 andR is the ~infinite! spatial domain of
the billiard and where throughout this paper we take the
tial pdf, P(x,y,u,0), to be bounded,uP(x,y,u,0)u,K, and
to be zero outside some finite region. For the infinite horiz
billiards shown in Fig. 1 we find that the moments of t
displacement have a time dependence

^r q&;tgq, ~2!

which we use as shorthand for

gq5 lim
t→`

ln^r q&
ln t

. ~3!

For all cases in Fig. 1 we find the exponentgq to be

gq5H q/2, q,2

q21, q.2.
~4!

Results of the form~2! with gq composed of piecewise linea
functions@different from Eq.~3!# have also been obtained i
other situations of Hamiltonian transport@8,9#. The occur-
rence of an exponentgqÞq/2 is commonly referred to a
anomalous diffusion, and gq.q/2 (gq,q/2) is also called
superdiffusion @10–15# ~subdiffusion!. Superdiffusion is
found in a variety of physical situations involving transpo
in Hamiltonian systems including transport of passive sca
in fluids @11,13,15# and ballistic electrons in solids@14#.

Figure 3 shows the results of numerical experiments t
ing ~4!. In these numerical experiments we start with a clo
of many initial conditions distributed uniformly in the acce
sible space occupied by one cell@the region outside of the
scatterer and within 0<y<L,0<x<L for Figs. 1~a!–1~c!,
and 0<y<L for Figs. 1~d!# and uniformly in 0<u<2p. We
then evolve the orbit of each particle in the cloud forward
time @16# and obtain̂ r q&. In all cases the results we obta
are consistent with Eq.~4!. The motivation for choosing an
initial distribution uniform in space and angle is that moti

FIG. 2. ~a! The stadium billiard has a domain bounded by tw
semicircular arcs of radiusR and two straight lines of lengthW.
Particle motion in this billiard can be mapped to motion in t
scalloped channel@Fig. 1~d1!#. In a similar manner, particle motion
in the bounded domain billiard shown in~b! can be mapped to
motion in the infinite domain billiard of Fig. 1~a!.
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i-

n

rs

t-
d

of an orbit from a typical initial condition in the billiards o
Fig. 2 is known to be ergodic, generating an invariant den
uniform in space and in angle 0<u<2p. In another set of
numerical experiments we used initial conditions distribu
uniformly in intervals ofu such that the lengths of the initia
flights are bounded@e.g., for Figs. 1~a!–1~c!, u0<u<p/2
2u0 , p/21u0<u<p2u0 , p1u0<u<3p/22u0 , 3p/2
1u0<u<2p2u0, whereu0,p/4]. Again, agreement with
Eqs. ~3! and ~4! was found. This indicates that the angul
particle distribution relaxes to the uniform distribution suf
ciently fast that the results~3! and ~4! are not modified. Ex-
plaining the reason for this insensitivity to the initial distr
bution is one of the main contributions of this paper~Sec.
II C!. Our other main contribution is the result that, for lon
time, initial distributions with no particles in au interval
about a direction of infinitely long flight~sayu50) lead to
long-time distributions with an invariant scaling form. Sp

cifically, P̂(u,t)5*RP(x,y,u,t)dxdy approachesP̃(f),

wheref5ut andP̃(f) is independent oft. Furthermore, the

sameP̃(f) universally applies for the billiards of Figs. 1~a!,

1~b!, 1~c!, 1~d2!, but P̃(f) is different for the billiard of Fig.
1~d1!. We use this scaling result to show the insensitivity
Eq. ~4! to the initial particle distribution.

Bleher @6# showed for infinite horizon billiards that th
limit in distribution as t→` of the pdf of the particle dis-
placements in the billiard is Gaussian with a width that
creases with time asAt ln t. ~For ordinary diffusion, the resul
is the same except that the width increases asAt.! However,
the asymptotict dependence of the moments cannot be c
culated from Bleher’s result. This is discussed in Sec.
Note that the definition of the symbol; given in Eqs.~2!
and ~3! is such that logarithmic corrections to the scaling
^r q& with time are not included@e.g., if ^r 2&>Ctln t, where
C is a constant, as suggested by Ref.@6#, theng2 from Eq.
~3! is 1, consistent with Eq.~4!#.

FIG. 3. The dependence of theqth moment,̂ ur uq&, on time for
the models discussed in this paper. Shown is the numerically d
mined time exponentgq ; with the symbols3, h, *, and 1 cor-
responding to the billiards depicted in Figs. 1~a!, 1~b!, 1~c!, and
1~d1!, respectively. The dashed line representsgq5q/2 and the dot-
ted line representsgq5q21.
0-2
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ANOMALOUS DIFFUSION IN INFINITE HORIZON BILLIARDS PHYSICAL REVIEW E67, 021110 ~2003!
II. THEORY

The difference between particle transport in an infin
horizon billiard and particle transport in the case of norm
diffusion is due to the arbitrarily long trajectories found
the infinite horizon billiard. These long flights occur in th
channels between the scattering boundaries of the billi
When a particle is traveling nearly parallel to the axis of t
channel@for Figs. 1~a!–1~c! there are many channels parall
to both thex andy axes whereas for Fig. 1~d! there is only
one channel, which is parallel to they axis#, it will travel
long distances between reflections off the billiard wall. L
un be the angle between the trajectory of a particle and
axis of the channel after thenth reflection of that particle
with a billiard wall. The lengthr n of the flight is of the order
of 1/uunu for uunu!1.

For some of the billiards we consider there are stro
correlations between theu values from one reflection to th
next. This is especially true of the scalloped channel w
semicircular arcs~stadium billiard!. Here, upon reflection
the angleun can change by, at most, a factor of 3@17#;
uunu/3<uun11u<3uunu. Thus if uunu is small, uun11u is also
small, and both represent long flights. This suggests an
treme model for the particle transport in which the length
a flight for each particle does not change from reflection
reflection; the length of each flight is completely correlat
with the previous flight, but different particles have differe
flight lengths.

A. The completely correlated model

Consider a one-dimensional system in which an ensem
of particles executes a random walk. The particles in
ensemble differ from each other in the length of the st
Dr j , each particle takes

Dr j51/j,jP@0,1#. ~5!

The random variablej is distributed uniformly in@0,1# (j is
inspired byun defined above, but is chosen to occupy t
interval @0,1# for simplicity!, and j for a particle does no
change from step to step~complete correlation!. Since every
billiard particle has the same speed we normalize the m
nitude of the velocity to 1 and thus take the time betwe
steps in our one-dimensional random walk model to be

Dtj51/j. ~6!

Since the random walk behaves like normal diffusion wh
the number of steps is large, theqth moment for eachj,
^ur uq&j , will be

K U r

Dr j
UqL

j

;S t

Dtj
D q/2

for t@Dtj . ~7!

Substitution for Dr j and Dtj yields, for long time t (t
@Dtj)

^ur uq&j;~ t/j!q/2 ~8!

for eachj.
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To find theqth moment for the entire ensemble, one nee
to take an average over all particles:

^ur uq&5E
0

1

^ur uq&jdj. ~9!

This average has two main contributions:

^ur uq&;E
N/t

1

~ t/j!q/2dj1E
0

1/t

tqdj, ~10!

whereN is chosen to be large, so that the random walks h
made many steps. The first term in Eq.~10! represents the
fraction of particles that have executed at leastN steps and so
can be described by Eq.~8!. The second term comes from
those particles that are still in their first flight~with velocity
51). The contribution from the intervalN/t>j>1/t @omit-
ted in Eq.~10!# has neither the majority of walkers~in the
limit of long time! nor the most extreme displacements a
so does not dominate the other terms. For long time Eq.~10!
yields

^ur uq&;H tq/2, q<2

tq21, q>2.
~11!

This simple toy model shows that it is the very lon
flights allowed by the open channels that give rise to
non-Gaussian behavior for moments greater than 2. O
might then think that for the real billiard systems of Fig.
the behavior forq.2 is a trivial result of the initial distri-
bution of angles. However, this is not the case and the
havior ~11! is robust to changes in the initial distribution o
particles. As discussed in Sec. II C, nonuniform initial ang
lar distributions scatter rapidly enough that Eq.~11! still
holds even if the initial distribution has no particles traveli
nearly parallel to the channels.

B. Moment equation for infinite horizon billiards
with a uniform initial angular distribution

We now consider a uniform initial spatial~within a cell!
and angular distribution for the cases of the ergodic billia
of Figs. 1~a! ~Sinai billiard! and 1~d! ~scalloped billiard!. In
these cases such a distribution is stationary when (x,y) is
taken modulo the appropriate cell period. We show thatgq is
given by Eq.~4! for these real billiard systems. The partic
transport in an infinite horizon billiard must proceed at le
as quickly as a random walk process~i.e., as fast as norma
diffusion!. While there exist mechanisms for faster than d
fusive transport~to be discussed below!, there is no stable
mechanism to stop or trap a billiard particle. The period
orbits that might trap the particle in these systems are
exponentially unstable. That a random walk is a lower bou
on the transport in the billiard system implies thatgq>q/2.

In addition to diffusivelike behavior, particle trajectorie
that consist of a single long flight~‘‘ballistic’’ flight ! also
participate in particle transport. If every particle were
move ballistically, we would findgq5q. This provides an
upper bound ongq ; not every particle will execute a singl
0-3
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uninterrupted flight. We can, however, place a lower bou
on the fraction of particles that do. Since the distribution
particle velocities is uniform in orientation, the fraction
particles executing flights of distancevt or more~wherev is
the velocity of the particle! involve a fraction of order ofW/t
of the particles occupying a channel at any one time, wh
W is the channel width defined in Fig. 1.~Although we have
definedv51, we retainv in this section to clarify when we
are speaking of distances and when we are speakin
times.! The contribution tô ur uq& from these particles is

^ur uq&*~vt !q~C/t !5Ctq21, ~12!

whereC is a constant depending on the size of the chan
There are two points that can be fixed on the graph ofgq

vs q. The first is the zeroth moment, which by the conser
tion of probability is identically equal to 1. Thusg050. The
second point is fixed by the diffusion coefficient, which r
lates the second moment to time. It has been found@7# that
^r 2& is of the ordert ln t and so, consistent with the definitio
~3!, ignoring factors of lnt we haveg251.

Next we argue thatgq is a concave up function ofq.
Invoking the Cauchy-Schwartz inequality@ uu(x•y)uu<uuxuu
3uuyuu#, for 0<e<q,

^ur uq&5^ur u(q1e)/2ur u(q2e)/2&<^ur uq1e&1/2^ur uq2e&1/2.
~13!

Thus

ln^ur uq&<
ln^ur uq1e&1 ln^ur uq2e&

2
. ~14!

From Eqs.~2!, ~3!, and ~14! we have that the graph ofgq
versusq is indeed concave up,

gq<
gq1e1gq2e

2
. ~15!

Finally, we show that Eq.~4! holds, i.e., thatgq5q/2 for
q<2 andgq5q21 for q>2. We have given lower bound
on gq , i.e.,gq>q/2 andgq>q21. We have also pinned th
value ofgq at two values:g050 andg251. The first lower
bound, the two known values ofgq , and the concavity con
dition ~15! force gq5q/2 for q<2. There is a trivial upper
bound ongq , gq<q. This upper bound, along with Eq.~14!
implies that the slope ofgq never exceeds 1. Sinceg251,
gq<q21 for q>2. Therefore, forq>2 both the upper
bound and the lower bound coincide resulting ingq5q21
for q>2.

C. Nonuniform initial angular distributions

The discussions of the previous two subsections relied
the existence of a uniform distribution forun in the particle
ensemble. This applies if one starts with a distribution u
form in angle and uniform in the space within a cell,
which case the particle ensemble will retain the uniform
gular distribution. On the other hand, even if we have
initial distribution that is nonuniform, it will~under very
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general conditions! relax to the uniform distribution as time
increases. The question we now address is whether this
laxation is fast enough to yield the same result for the te
poral scaling of̂ ur qu&, Eq. ~11!, as the initially uniform dis-
tribution.

To consider this question, we first study the relaxation
an initial particle distribution with no particles in a finite ga
around the channel direction. For example, for the scallo
channel we consider the case where the initial particle dis
bution is uniform in the space within a cellC and

P~x,y,u,t50!5H 0 for uuu,u0 or uu2pu,u0

K otherwise,
~16!

where 0<u<2p is the angle of the particle velocity vecto
with the y axis, K and u0 are constants, and (x,y) is in C.
Similarly, for the cases of Figs. 1~a!–1~c! we consider an
initial distribution,

P~x,y,u,t50!5H 0 for uu2np/2u,u0

K otherwise,
~17!

wheren50,1,2,3. In particular, we focus on the behavior
P(x,y,u,t) for uuu small, t large, and (x,y) in a channel.
@Similar results apply for Eq.~17! with uu2p/2u or uu2pu
or uu23p/2u small.# For all cases shown in Fig. 1, we find
remarkable scaling behavior. LetP̂(u,t)5**Pdxdy, where
the spatial integral is over a channel. Then, if we introdu
the scaled variablef5ut, we find that, in all the cases w
have tested, the angular distribution functionP̂(u,t) ap-
proaches a stationary form. That is,

P̂~u,t !→ P̃~f! as t→`. ~18!

We illustrate this with a numerical calculation on the sc
loped billiard with 180° arcs@Fig. 1~d1!# in Fig. 4. In gen-
erating this figure we follow the evolution of a large numb
of orbits initialized according to Eq.~16!, and form the dis-
tribution P̂(u,t) using a histogram approximation. A
shown, at successively largert the distribution approaches

FIG. 4. The time evolution of an initially uniform angular dis
tribution of particles in the interval@0.3,p/2# for the scalloped
channel with semicircular arcs. The distribution is shown at th
times; 1 at t527, 3 at 81, and * at 243. The distribution o
particles in the channel of widthW becomes self-similar and stati

in the coordinatef5ut with P̃(f)50 for f,fmin .
0-4
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time independent formP̃(f) where P̃(f) is zero for f

,fmin , and, asf increases pastfmin , P̃(f) increases, as
ymptoting to a constant for largef.

A similar numerical experiment for the Sinai billiard@Fig.
1~a!# yields the result in Fig. 5. In this case the large tim
distribution assumes the form

P̃~f!5H C~f/f0! for 0,f,f0,

C for f.f0 ,
~19!

whereC andf0 are constants. Furthermore, we numerica
obtain this same form for all the other cases of Fig. 1@except
for the case of the scalloped billiard with 180° arcs, F
1~d1!, which gives the result in Fig. 4#. We explain the rea-
son for the result~19! and why it does not apply for the
billiard of Fig. 1~d1! subsequently, but before doing that w
first show that these results forP̃(f) imply the applicability
of Eq. ~4! for the large time behavior of̂ur uq&.

In order to show that Eq.~4! applies consider the fractio
J(t0) of particles that, at some large timet0, have f
,f* , where we takef* 52fmin for the case of Fig. 1~d1!
andf* 5f0, for the other cases. Noting thatf,f* implies
u,f* /t, we have that for larget0,

J~ t0!>E
0

f
*

/t0
P̃~ut !du5~ t0!21E

0

f
* P̃~f!df5Kt0

21 ,

~20!

whereK is a constant. Between timest0 and 2t0 these par-
ticles experience flights of length;vt0. Hence fort52t0
these flights give a contribution tôr q& that is approximately
(2K/t)(vt)q;tq21. Thus the lower bound~12! still applies,
and, by the reasoning in Sec. II B, we again obtain Eq.~4!.

We note that the asymptotic time dependenceP̃(f) with
f;ut is marginal in the sense that, if the repopulation of
initially empty channel were slower~in the sense below!,
then Eq.~4! would not be recovered. In order to see th
consider the hypothetical case where an asymptotic distr
tion P(f) of the form in Fig. 4 or Fig. 5 is still approached
but with a self-similarf scaling given byfa;uta. We have
already considered the casea51, while a,1 (a.1) cor-

FIG. 5. The time evolution of an initially uniform angular dis
tribution of particles in theu interval@0.3,p/2# for the Sinai billiard
with L/R51. The distribution is shown at four times;1 at t59, 3
at 27, * at 81, andh at 243. The distribution of particles in
channel becomes self-similar and static in the coordinatef5ut.
02111
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responds to slower~faster! filling in of the channel. If, for
0,a,1 ~i.e., slow repopulation! we pursue the same rea
soning as above for thea51 case, then we obtain the boun
gq>a(q21), and we can no longer conclude that Eq.~4!
holds. Fora.1, we consider at timet0 a range of angles
u1;1/t0.u.u2;f* /t0

a . Since a.1, we have thatu1

@u2 , and replacingu2 by zero does not alter the estima
for the contribution to^r q& from u1.u.u2 . Thus the
lower bound estimate of Sec. II B still applies for 0,a
,1.

We now discuss the asymptotic formsP̃(f) illustrated in
Fig. 4 for the scalloped billiard with 180° arcs, and in Fig.
and Eq.~19! for the other cases.

First we discuss the scalloped billiard with 180° arcs.
full treatment of the theory yieldingP̃(f) in this case will be
given elsewhere@18#; in the present paper, we will limit ou
discussion to the basic reason for the difference between
case and the other cases. In particular, we discuss why
this case, P̃(f)50 in a finite interval about zero,f
,fmin . From Fig. 1~d1! we see that after a long flight in th
channel a particle will collide with the channel wall close
one of the cusp points where two arcs touch. For the cas
180° arcs, the tangent to such a section of the channel wa
nearly horizontal. Thus, upon reflectionû[min(uuu,uu2pu)
will still be small. In fact, as shown in Ref.@17# by consid-
eration of the geometry,ûn11 on the (n11)st reflection can-
not change by more than a factor of 3 fromûn ,

ûn/3<ûn11<3ûn for ûn!1. ~21!

Thus, if ûn is small, ûn11 is still relatively small. We can
obtain the lower bound onf by considering the most ex
treme case whereû always decreases by 3 on every boun

ûn115
1

3
ûn , ~22!

tn115tn1W/~v ûn!, ~23!

whereW is the channel width defined in Fig. 1~d1!, v is the
particle velocity, andtn is the time of thenth reflection.
Multiplying Eq. ~22! by Eq. ~23!, we have

f̂n115
1

3
f̂n1W/v, ~24!

which, for large n, asymptotes to the solutionf̂
53W/(2v). Thusfmin53W/(2v), which agrees with our nu-
merical solution Fig. 4~see also Ref.@18#!.

In contrast to the case of the scalloped channel with 1
arcs, in the other cases shown in Fig. 1, the scattering
long flight upon reflection from a channel wall leads to
much more drastic change in the angle of a particle’s vel
ity vector with respect to the channel axis. For example,
the case of the Sinai billiard, the angular deflection is ty
cally of orderû1/2 which, for smallû, is much larger thanû.
For the case of the scalloped channel with arcs of less t
0-5
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180°, a particle moving nearly parallel to a channel axis
scattered by an angle of order 1. Furthermore, after a la
deflection, the orientation of the particle’s velocity vector
rapidly randomized by a succession of many reflectio
which, since the particle is no longer in a long flight, c
occur in a relatively short time. These considerations lead
to a model for the cases in Figs. 1~a!–1~c! and 1~d2! in
which we adopt the model hypothesis that, when a particl
a long flight suffers a collision with a billiard wall, the ori
entation of its velocity vector is randomly scattered with u
form probability density in@0,2p#. We wish to determine the
evolution from the initial condition~a! in Fig. 6 for the case
umax!1. This initial distribution is equal to the initial distri
bution~b! in Fig. 6 minus the initial distribution~c! in Fig. 6.
The initial condition~b!, which is uniformly distributed in
angle, remains unchanged when it is evolved forward in ti

@ P̂b(u,t)5 P̂b(u,0)#, since it is an invariant distribution
Thus, to find the evolution from initial condition~a!, we can
determine the evolution from~c!, and then subtract it from
~b!. The long time evolution from~c! can be found by con-
sidering the time at which particles are scattered. Consi
for example, the scalloped channel, Fig. 1~d2!, and a particle
with a small initialu0. Suppose the particle is located in th
channel at a distanceDx from the boundary of the channe
with which it will collide @left or right vertical dashed line in
Fig. 1~d2!#. If Dx,vt sinu0>vtu0, the particle scatters; i
Dx.vtu0, it does not scatter. Since the particles we
considering are in the channel,Dx,W, every particle with
u0.W/(vt) must have scattered at least once. We assu
that t.W/(vumax)[t0. Sinceumax is small, the scattered pa
ticles contribute a small positive value of orderumax to
P̂c(u,t) in 0<u<2p. Thus P̂c(u,t) is small ~i.e., of order
umax) for u.W/vt. For u0,Dx/(vt), t.t0, the particle has
not yet scattered. Assuming that the initial spatial distribut
of particles in the channel is uniform, the fraction of particl
with initial angleu0 that have scattered isu0vt/W. Thus

P̂c~u,t !>H P̂c~u,0!~12uvt/W! for u,W/~vt !,

0 for u.W/~vt !,
~25!

where we have neglected the small, orderumax, contribution
to P̂c(u,t) from scattered particles. SubtractingP̂c from P̂b
as illustrated in Fig. 7, we obtain the time asymptotic form
Fig. 5 and Eq.~19!.

FIG. 6. An initial distribution of particles with trajectories un
form in the angleu for u.umax and zero for anglesu,umax ~a! is
equivalent to a distribution uniform for allu ~b! minus a distribu-
tion that is uniform foru,umax and zero foru.umax ~c!. We use
the time evolution of the distributions in~b! and~c! to find the time
evolution of ~a!; see Fig. 7.
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III. DISCUSSION

As mentioned in the Introduction, Bleher@6# proved, up
to some natural conjectures: ‘‘For any periodic configurat
of scatterers with an infinite horizon the limit in distributio

lim
t→`

r ~ t !2r ~0!

~ t ln t !1/2
5h ~26!

exists andh is a Gaussian random variable.’’@We have sub-
stituted ourr (t) for Bleher’sx(t) for the sake of notationa
consistency.#

We take no issue with Bleher’s proof referred to abov
but we emphasize its use oflimit in distribution convergence.
This kind of convergence is the least restrictive kind of co
vergence considered within the context of probability a
statistics. A proof of convergence in distribution implies on
the ability to calculate the expectation values of functio
that remain bounded. The convergence required by a lim
distribution is only strong enough to allow calculation of th
expectations of functions that remain bounded@19#. There-
fore the convergence of Bleher’s pdf is not strong enough
allow the moments of the distribution to be calculated. As
result of the strong weightur uq puts on the tails of the distri-
bution (ur u→`), two different distributions with the sam
limit in distribution can have very different moments.

The fact that Bleher is able to accurately~according to our
simulations! calculate the second and lower moments of
displacement distribution suggests that his result can
strengthened to ‘‘convergence inqth mean’’ which is satis-
fied for a sequenceXn if the expectation value ofuXn2Xuq
→0 asn→`. Convergence inqth mean also implies that th
expectation value ofuXnup limits to the expectation value o
uXup for 1<p<q @20#. Thus our results are consistent wi
convergence inqth mean to Bleher’s distribution forq52,
but rule out convergence for any higher value ofq.

The inapplicability of Bleher’s result explains the discre
ancy between Eqs.~2!–~4! and the result̂ ur uq&;(t ln t)q/2

one would find by mistakenly calculating moments usi
Bleher’s pdf. Equations~2!–~4! also differ from normal dif-
fusion, ^ur uq&;tq/2, as well as from the result suggested
Ref. @21#.

FIG. 7. The evolution ofP̂c(u,t) and P̂(u,t).
0-6
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In conclusion, our two main results are as follows.
~a! The momentŝ r q& scale astgq with gq given by Eq.

~4! for any initial bounded distribution,uP(x,y,u,0)u,K,
that is zero outside some finite region@in particular, Eq.~4!
still applies if the initial distribution has no particles wit
infinite flights#.

~b! If the initial distribution has no particles in au interval
about a direction of infinitely long flight~say u50), then
P̂(u,t)5*RP(x,y,u,t) approaches a time-invariant scalin
form P̃(f), wheref5ut and P̃(f) is universally the same
A

e

hy

-

02111
~Fig. 5! for the billiards of Figs. 1~a!, 1~b!, 1~c!, 1~d2!, but is
different ~Fig. 4! for the billiard of Fig. 1~d1!.
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