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Anomalous diffusion in infinite horizon billiards
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We consider the long time dependence for the moments of displacémghtof infinite horizon billiards,
given a bounded initial distribution of particles. For a variety of billiard models we fin{#)~t”a (up to
factors of Int). The time exponenty,, is piecewise linear and equal ¢g2 for <2 andgq—1 for g>2. We
discuss the lack of dependence of this result on the initial distribution of particles and resolve apparent
discrepancies between this time dependence and a prior result. The lack of dependence on initial distribution
follows from a remarkable scaling result that we obtain for the time evolution of the distribution function of the
angle of a particle’s velocity vector.

DOI: 10.1103/PhysRevE.67.021110 PACS nun)er05.40.Fb, 02.50.Fz, 05.45.Pq

[. INTRODUCTION than 180°. Particle motion for the situation in Figdl) is
equivalent to particle motion for a stadium-type billidste
Diffusion of particles in an infinite domain billiard is a Fig. 2@)]; the particle motion within the scalloped channel
well studied problen1-7]. By a billiard we refer to the can be folded into the stadium billiard via reflection of the
motion of a point particle in a two-dimensional domain in particle at a straight wall as it passes to the next cell. By cells
which the particle moves with constant velocity in straightwe mean each portion of the scalloped channel domain be-
line orbits executing specular reflectigie., angle of inci- tween the dotted lines of Fig(d). In a similar manner, par-
dence equals angle of reflectjoitom fixed boundaries. By ticle motion in the bounded billiard of Fig.(B can be
an infinite domain we refer to an unbounded two-thought of as equivalent to motion in the infinite billiard of
dimensional region. An early consideration of diffusion in aFig. 1(a). One important means of characterizing transport in
billiard as a model in physics was made by Loreft}to  an infinite domain two-dimensional billiard is through the
model electrons in a metal. In this modeklled the Lorentz phase space probability distribution functioripdf),
gas particles move freely and reflect specularly from fixed, P(X,y,6,t), whereg is the angle of the particle velocity and
randomly placed, hard-wall scatterers. A modification of thewe take all particle velocities to have magnitude 1. From the
two-dimensional Lorentz gas in which there are circular scatpdf one can calculate the displacement moments of the dis-
terers on a square lattice is an example of an infinite horizon
billiard, called the Sinai billiard5], and is illustrated in Fig.
1(a). Infinite horizon billiards are the subset of infinite do-
main billiards that contain channels through which a particle
may pass without ever reflecting off a billiard wall. In this
paper we consider diffusion in infinite horizon billiards. The
examples that we study numerically are shown in Figa)-1
1(d). The billiards in Fig. 1 include(a) the Sinai billiard,
composed of circular, hard-wall scatterers arranged on a
square lattice such that the scatterers do not touch each other;
(b) a modification of mode(a) in which the circular scatter-
ers are randomly displacédandom in direction and magni-
tude by at mostA<L/2—R, so that there are channels of
width L—2(R+A) accommodating free motionic) ran-
domly oriented square scatterers on a square lattice{@nd
the scalloped channel, in which the domain is infinite in the
y direction and bounded in the direction by circular arc
segments, each subtending an angle less than or equal 10 kG, 1. The four infinite horizon billiard structures that we con-
180°. Figure 1d1) shows the case of the scalloped channekiger include(a) the Sinai billiard such that the channel widit
where the circular arc segments are semicircles, while Fig=| —2R>0; (b) the Sinai billiard with random displacements
1(d2) shows the case where the arcs subtend an angle leggay from the square matrix such tHat=L—2(R+A)>0; (c)
randomly oriented squares such thiét L — \2d>0; (d) scalloped
channel with(dl) semicircular arcs andd2) arcs subtending an
*Electronic address: dna2@physics.umd.edu angle less than 180°.
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FIG. 2. (a) The stadium billiard has a domain bounded by two
semicircular arcs of radiuR and two straight lines of length.
Particle motion in this billiard can be mapped to motion in the
scalloped channéFig. 1(d1)]. In a similar manner, particle motion
in the bounded domain billiard shown itp) can be mapped to
motion in the infinite domain billiard of Fig. (&).

tribution. Thegth moment at time is
(rfy=((x*+y?)%?)
2m de
=f f (X*+y?)?P(x,y,0,)dxdys—, (1)
0o JR 2

wherer = \x?>+y? and R is the (infinite) spatial domain of
the billiard and where throughout this paper we take the ini
tial pdf, P(x,y,6,0), to be bounded,P(x,y,#,0)|<K, and

to be zero outside some finite region. For the infinite horizorh

billiards shown in Fig. 1 we find that the moments of the
displacement have a time dependence

(ri)~tr, (2
which we use as shorthand for
'}’q:tlifllr:i]r: > 3
For all cases in Fig. 1 we find the exponentto be
g2, q<2
YaTlg-1, gq>2. @

Results of the forn2) with y, composed of piecewise linear
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FIG. 3. The dependence of tiggh moment(|r|?), on time for
the models discussed in this paper. Shown is the numerically deter-
mined time exponeny, ; with the symbolsx, [, *, and + cor-
responding to the billiards depicted in Figgajl 1(b), 1(c), and
1(d1), respectively. The dashed line represeyts q/2 and the dot-
ted line representy,=q—1.

‘of an orbit from a typical initial condition in the billiards of

Fig. 2 is known to be ergodic, generating an invariant density
niform in space and in angle0d<2s. In another set of
numerical experiments we used initial conditions distributed
uniformly in intervals of# such that the lengths of the initial
flights are boundede.g., for Figs. 1&)—1(c), fy=<O0</2

— 6y, T2+ 0g<O<m—0y, Tt 0y=<6<3mw/2— 6y, 3m/2

+ 609=< <27 — 6, wherefy</4]. Again, agreement with
Egs. (3) and (4) was found. This indicates that the angular
particle distribution relaxes to the uniform distribution suffi-
ciently fast that the results) and(4) are not modified. Ex-
plaining the reason for this insensitivity to the initial distri-
bution is one of the main contributions of this pag&ec.

I C). Our other main contribution is the result that, for long
time, initial distributions with no particles in @ interval
about a direction of infinitely long flightsay #=0) lead to
long-time distributions with an invariant scaling form. Spe-

cifically, ﬁ’(e,t)szP(x,y,e,t)dxdy approachesP(¢),

functions[different from Eq.(3)] have also been obtained in where¢= 6t andP(¢) is independent of Furthermore, the

other situations of Hamiltonian transpd®,9]. The occur-
rence of an exponenf,#q/2 is commonly referred to as
anomalous diffusionand y,>0q/2 (y4<q/2) is also called
superdiffusion [10-15 (subdiffusion. Superdiffusion is
found in a variety of physical situations involving transport

in Hamiltonian systems including transport of passive scalars

in fluids[11,13,19 and ballistic electrons in solid44].

sameP(¢) universally applies for the billiards of Figs(a,

1(b), 1(c), 1(d2), butP(¢) is different for the billiard of Fig.
1(d1). We use this scaling result to show the insensitivity of
Eq. (4) to the initial particle distribution.

Bleher [6] showed for infinite horizon billiards that the
limit in distribution ast—o of the pdf of the particle dis-

Figure 3 shows the results of numerical experiments testelacements in the billiard is Gaussian with a width that in-
ing (4). In these numerical experiments we start with a clougcreases with time agt Int. (For ordinary diffusion, the result

of many initial conditions distributed uniformly in the acces-
sible space occupied by one cfthe region outside of the
scatterer and within € y<L,0<x<L for Figs. 1a)-1(c),
and O<y=<L for Figs. Xd)] and uniformly in O< 6<2=. We

is the same except that the width increases'tas However,
the asymptotid dependence of the moments cannot be cal-
culated from Bleher’s result. This is discussed in Sec. lll.
Note that the definition of the symbel given in Egs.(2)

then evolve the orbit of each particle in the cloud forward inand(3) is such that logarithmic corrections to the scaling of

time [16] and obtain(r%). In all cases the results we obtain
are consistent with Eq4). The motivation for choosing an
initial distribution uniform in space and angle is that motion

(r% with time are not includede.g., if (r?)=CtInt, where
C is a constant, as suggested by Héi, theny, from Eq.
(3) is 1, consistent with Eq4)].

021110-2



ANOMALOQOUS DIFFUSION IN INFINITE HORIZON BILLIARDS PHYSICAL REVIEW E67, 021110 (2003

Il. THEORY To find thegth moment for the entire ensemble, one needs

The difference between particle transport in an im‘initet0 take an average over all particles:

horizon billiard and particle transport in the case of normal 1

diffusion is due to the arbitrarily long trajectories found in <|r|q>=f (Ir|9)cdé. 9

the infinite horizon billiard. These long flights occur in the 0

channels between the scattering boundaries of the billiard., . . o

When a particle is traveling nearly parallel to the axis of the ! NiS average has two main contributions:

channelfor Figs. 1a)—1(c) there are many channels parallel 1 1h

to both thex andy axes whereas for Fig.(d) there is only <|r|q>~f (t/g)q’2d§+j t9dé, (10)

one channel, which is parallel to theaxis], it will travel N/t 0

long distances between reflections off the billiard wall. Let .

6, be the angle between the trajectory of a particle and th&hereN is chosen to be large, so that the random walks have

axis of the channel after theth reflection of that particle Made many steps. The first term in H40) represents the

with a billiard wall. The lengthr , of the flight is of the order ~ fraction of particles that have executed at ldsteps and so

of 1/ 6,| for |6,/ <1. can be de_scnbed by Ecj8}. The s.ec_ond term comes _from
For some of the billiards we consider there are strondhose particles t_hat_are still in th_elr first fligtwith velom_ty

correlations between the values from one reflection to the = 1)- The contribution from the interval/t=£= 1/t [omit-

next. This is especially true of the scalloped channel with€d in Eq.(10)] has neither the majority of walkei@n the

semicircular arcgstadium billiard. Here, upon reflection, limit of long time) nor the most extreme displacements and

the angled, can change by, at most, a factor of[37]; so does not dominate the other terms. For long time(EQ).

|0,|/3<| 6, 1| <3| 64]. Thus if |6, is small, |6, 4| is also ~ Yi€lds

small, and both represent long flights. This suggests an ex- a2
. . . , qS
treme model for the particle transport in which the length of a\
. . . ([~ g1 (11
a flight for each particle does not change from reflection to t974, g=2.

reflection; the length of each flight is completely correlated
with the previous flight, but different particles have different ~ This simple toy model shows that it is the very long

flight lengths. flights allowed by the open channels that give rise to the
non-Gaussian behavior for moments greater than 2. One
A. The completely correlated model might then think that for the real billiard systems of Fig. 1

: . . . . the behavior fog>2 is a trivial result of the initial distri-
Consider a one-dimensional system in which an ensemblg, i,y of angles. However, this is not the case and the be-

of particles executes a random walk. The particles in th,, o (11) is robust to changes in the initial distribution of
ensemble differ from each other in the length of the stepp,icies. As discussed in Sec. Il C, nonuniform initial angu-
Ar,, each particle takes lar distributions scatter rapidly enough that E41) still
Ar,=1/¢,£[0,1]. (5) holds even if the initial distribution has no particles traveling
¢ ' ' nearly parallel to the channels.

The random variablé€ is distributed uniformly i 0,1] (¢ is
inspired by 6,, defined above, but is chosen to occupy the B. Moment equation for infinite horizon billiards
interval [ 0,1] for simplicity), and ¢ for a particle does not with a uniform initial angular distribution
change from step to stgpomplete correlation Since every
billiard particle has the same speed we normalize the mag;
nitude of the velocity to 1 and thus take the time betwee f
steps in our one-dimensional random walk model to be

We now consider a uniform initial spati@ithin a cel
d angular distribution for the cases of the ergodic billiards
Figs. @) (Sinai billiard and 1d) (scalloped billiarg. In
these cases such a distribution is stationary wheg)(is
Atg=1/¢. (6) ta_lken modulo the appropriate c_el! period. We show t;hplS
given by Eq.(4) for these real billiard systems. The particle
Since the random walk behaves like normal diffusion whertransport in an infinite horizon billiard must proceed at least
the number of steps is large, thgh moment for eackt,  as quickly as a random walk proce§®., as fast as normal
(|r]%, will be diffusion). While there exist mechanisms for faster than dif-
/2 fusive transportto be discussed belgwthere is no stable
r q
< A_rg q> N(A_tJ for t>At,. () orbits that might trap the particle in these systems are all
¢ exponentially unstable. That a random walk is a lower bound

mechanism to stop or trap a billiard particle. The periodic
Substitution for Ar, and At, yields, for long timet (t on the transport in the billiard system implies that=q/2.

>Aty) In addition to diffusivelike behavior, particle trajectories
that consist of a single long flight'ballistic” flight ) also

(|r|9) gN(t/g)q/Z (8) participate in particle transport. If every particle were to
move ballistically, we would findy,=q. This provides an

for eaché. upper bound ony,; not every particle will execute a single
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uninterrupted flight. We can, however, place a lower bound 100

on the fraction of particles that do. Since the distribution of e
particle velocities is uniform in orientation, the fraction of 1071 f"

particles executing flights of distanoé or more(wherev is o

the velocity of the particleinvolve a fraction of order ofv/t g 102 o

of the particles occupying a channel at any one time, where

W is the channel width defined in Fig. (Although we have 103

definedv =1, we retainv in this section to clarify when we

are speaking of distances and when we are speaking of 104 ‘ ,

times) The contribution to(|r|%) from these particles is 107 T, 100 ) 10° 10?

(Ir|9=(vt)d(C/t)=Cta7 1, (12
whereC is a constant depending on the size of the channe
There are two points that can be fixed on the graplypf
vs g. The first is the zeroth moment, which by the conserva

tion of probability is identically equal to 1. Thug=0. The
second point is fixed by the diffusion coefficient, which re-
lates the second moment to time. It has been fduijdhat
(r?) is of the ordett Int and so, consistent with the definition
(3), ignoring factors of It we havey,=1.

Next we argue thaty, is a concave up function of.
Invoking the Cauchy-Schwartz inequalify|(x-y)||<||x||
X|ly[l], for O<e=<q,

(Ir[ =l Zr| @2y <(Jr|a" ) VX]|r[17 V2

13
Thus

Ind[r[F7)+In(|r|9”<)
2

In{|r|%)= (14

From Egs.(2), (3), and (14) we have that the graph of,
versusq is indeed concave up,

7q+6+ 7q—E

<

Finally, we show that Eq4) holds, i.e., thaty,=q/2 for
<2 andyq=q—1 for g=2. We have given lower bounds
oNn vy, i.e., 74=0/2 andyq=q—1. We have also pinned the
value of y4 at two values:y,=0 andy,=1. The first lower
bound, the two known values of;, and the concavity con-
dition (15) force y,=q/2 for g<2. There is a trivial upper
bound onyg, v4=<g. This upper bound, along with E{L4)
implies that the slope of, never exceeds 1. Sincg,=1,
Yq<=q—1 for g=2. Therefore, forq=2 both the upper
bound and the lower bound coincide resultingyig=q—1
for q=2.

C. Nonuniform initial angular distributions

The discussions of the previous two subsections relied o
the existence of a uniform distribution f@, in the particle

FIG. 4. The time evolution of an initially uniform angular dis-
Itribution of particles in the interva]0.3,#/2] for the scalloped
¢hannel with semicircular arcs. The distribution is shown at three

times; + att=27, X at 81, and * at 243. The distribution of

particles in the channel of widtW becomes self-similar and static
in the coordinatep= 6t with P(¢)=0 for ¢< iy,

general conditionsrelax to the uniform distribution as time
increases. The question we now address is whether this re-
laxation is fast enough to yield the same result for the tem-
poral scaling of|r9|), Eqg.(11), as the initially uniform dis-
tribution.

To consider this question, we first study the relaxation of
an initial particle distribution with no particles in a finite gap
around the channel direction. For example, for the scalloped
channel we consider the case where the initial particle distri-
bution is uniform in the space within a celland

0 for [0]<6, or |6—m|<6,

P(x,y,0,t=0) :{ K otherwise,

(16)

where 0= <2 is the angle of the particle velocity vector
with the y axis, K and 6, are constants, andk{y) is in C.
Similarly, for the cases of Figs.(d-1(c) we consider an
initial distribution,

0 for |6—nm/2|< 6,
K otherwise,

P(x,y,ﬂ,t=0)={ (17)

wheren=0,1,2,3. In particular, we focus on the behavior of
P(x,y,6,t) for |6] small,t large, and X,y) in a channel.
[Similar results apply for Eq(17) with |6— /2| or |6— |
or |#—3/2| small] For all cases shown in Fig. 1, we find a
remarkable scaling behavior. LB 6,t) = fPdxdy, where
the spatial integral is over a channel. Then, if we introduce
the scaled variableo= 6t, we find that, in all the cases we
have tested, the angular distribution functi&w,t) ap-
proaches a stationary form. That is,
P(6,t)—P(¢) ast—wx. (18

n

We illustrate this with a numerical calculation on the scal-

ensemble. This applies if one starts with a distribution uni-oped billiard with 180° arcgFig. 1(d1)] in Fig. 4. In gen-

form in angle and uniform in the space within a cell, in

erating this figure we follow the evolution of a large number

which case the particle ensemble will retain the uniform an-of orbits initialized according to E¢16), and form the dis-
gular distribution. On the other hand, even if we have artribution P(6,t) using a histogram approximation. As

initial distribution that is nonuniform, it will(under very

shown, at successively largethe distribution approaches a
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0.35 T i " responds to sloweffastey filling in of the channel. If, for
03} * B 0<a<1 (i.e., slow repopulationwe pursue the same rea-
0.25 | . soning as above for the=1 case, then we obtain the bound
_ o2l ¢ Y¢=a(q—1), and we can no longer conclude that E4).
15015 I f holds. Fora>1, we consider at timé¢, a range of angles
oal ;; 0. ~1tg>60>60_~¢,It;. Sincea>1, we have that,
i >¢_, and replacingd_ by zero does not alter the estimate
005 1" for the contribution to(r9) from 6,>6>6¢_. Thus the
06 02 02 08 08 1 12 1a lower bound estimate of Sec. IIB still applies for<@

) <1.

FIG. 5. The time evolution of an initially uniform angular dis- We now discuss the a?YmptOt_'C forrRg ¢) |IIustrat_ed |_n
tribution of particles in thed interval[ 0.37/2] for the Sinai billiard ~ F19- 4 for the scalloped billiard with 180° arcs, and in Fig. 5
with L/R= 1. The distribution is shown at four times; att=9, x and Eq.(19) for the other cases.
at 27, * at 81, and at 243. The distribution of particles in a First we discuss the scalloped billiard with 180° arcs. A
channel becomes self-similar and static in the coordigsatest. full treatment of the theory yielding () in this case will be

given elsewherl8]; in the present paper, we will limit our
time independent fornP(#) where P(¢) is zero for ¢ discussion to the basic reason for Fhe differenqe between this
case and the other cases. In particular, we discuss why, for

this case, P(¢)=0 in a finite interval about zerog

< min- From Fig. 1d1) we see that after a long flight in the
channel a particle will collide with the channel wall close to
one of the cusp points where two arcs touch. For the case of
180° arcs, the tangent to such a section of the channel wall is
~ C(¢l o) for 0< <y, nearly horizontal. Thus, upon reflectiof=min(|¢,|6— )
P(¢)= c for &> d (190 will still be small. In fact, as shown in Ref17] by consid-

eration of the geometry,,. ; on the 1+ 1)st reflection can-

whereC and ¢, are constants. Furthermore, we numericallynot change by more than a factor of 3 frai,

obtain this same form for all the other cases of Fifiexcept . ~ . .

for the case of the scalloped billiard with 180° arcs, Fig. 0,/3<06,,,<30, for 0,<1. (21
1(d1), which gives the result in Fig.]J4We explain the rea- R R

son for the resul{19) and why it does not apply for the Thus, if 6, is small, 6, is still relatively small. We can
billiard of Fig. 1(d1) subsequently, but before doing that we obtain the lower bound o by considering the most ex-

first show that these results f&( #) imply the applicability —treme case where always decreases by 3 on every bounce,
of Eq. (4) for the large time behavior dfir|%.

In order to show that Eq4) applies consider the fraction ) :}b 22)
E(ty) of particles that, at some large tintg, have ¢ n+1imgtne
< ¢, , where we takep, = 2o, for the case of Fig. 1)
and ¢, = ¢, for the other cases. Noting thét< ¢, implies tho1 =t W/ (v bn), (23
0< ¢, It, we have that for largg,,

< bmin, and, asp increases pasp,, P(¢) increases, as-
ymptoting to a constant for largeé.

A similar numerical experiment for the Sinai billiafgig.
1(a)] yields the result in Fig. 5. In this case the large time
distribution assumes the form

whereW is the channel width defined in Fig(dl), v is the

b Ito P i i i i i
Y 1 -1 particle velocity, andt,, is the time of thenth reflection.
“(tO)_L P(61)d6=(to) fo P(¢)d¢=Ki,", Multiplying Eq. (22) by Eg.(23), we have

(20) 1
whereK is a constant. Between timég and %, these par- ¢““:§¢”+W/v’ (24

ticles experience flights of lengtkvty. Hence fort=2t,

these flights give a contribution {@9) that is approximately which, for large n, asymptotes to the solutiong
(2K/t) (vt)9~t9"1. Thus the lower boundl2) still applies, =3W/(2v). Thusd,=3WI/(2v), which agrees with our nu-
and, by the reasoning in Sec. Il B, we again obtain @. merical solution Fig. 4see also Ref.18]).

We note that the asymptotic time dependeﬁoﬁeﬁ) with In contrast to the case of the scalloped channel with 180°
¢~ 6t is marginal in the sense that, if the repopulation of anarcs, in the other cases shown in Fig. 1, the scattering of a
initially empty channel were slowe(in the sense below long flight upon reflection from a channel wall leads to a
then Eq.(4) would not be recovered. In order to see this,much more drastic change in the angle of a particle’s veloc-
consider the hypothetical case where an asymptotic distributy vector with respect to the channel axis. For example, for
tion P(¢) of the form in Fig. 4 or Fig. 5 is still approached, the case of the Sinai billiard, the angular deflection is typi-
but with a self-similarg scaling given byp,~ 6t*. We have  cally of order*2 which, for smallg, is much larger tharm.
already considered the caae=1, while «a<1 (a>1) cor- For the case of the scalloped channel with arcs of less than
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P®,0) B(®,0) P®,0) @)
’ o ¢ Time=0 Time=t >> 1
b P bl t
9 0 0 ¢ .9
) (b) )
6 9 0
FIG. 6. An initial distribution of particles with trajectories uni- .~ TOAX et

form in the angled for 6> 6, and zero for angled< 6, (3) is (b)

equivalent to a distribution uniform for at (b) minus a distribu- Time=0 Time=t >> 1

tion that is uniform for6< 6, and zero for6> 6,4 (c). We use A N
the time evolution of the distributions iit) and(c) to find the time P(®,0) %P (0,t)
evolution of (a); see Fig. 7. \§

6

180°, a particle moving nearly parallel to a channel axis is
scattered by an angle of order 1. Furthermore, after a large ) . .
deflection, the orientation of the particle’s velocity vector is FIG. 7. The evolution oP(6,t) andP(6,1).
rapidly randomized by a succession of many reflections
which, since the particle is no longer in a long flight, can
occur in a relatively short time. These considerations lead us As mentioned in the Introduction, Blehgs] proved, up

to a model for the cases in Figs(al-1(c) and Xd2) in  to some natural conjectures: “For any periodic configuration

which we adopt the model hypothesis that, when a particle ipf scatterers with an infinite horizon the limit in distribution
a long flight suffers a collision with a billiard wall, the ori-

Ill. DISCUSSION

entation of its velocity vector is randomly scattered with uni- r(t)—r(0)
form probability density if 0,277]. We wish to determine the Iim—ll2 =7 (26)
evolution from the initial conditior(a) in Fig. 6 for the case t—e (tInt)

0max<1. This initial distribution is equal to the initial distri- ) . . )

bution (b) in Fig. 6 minus the initial distributiotic) in Fig. 6.  €Xists andy is a Gaussian random variabl¢\We have sub-
The initial condition(b), which is uniformly distributed in ~ Stituted ourr (t) for Bleher'sx(t) for the sake of notational
angle, remains unchanged when it is evolved forward in timgonsistency. _ ,

[Py(6,t)=P,(6,0)], since it is an invariant distribution. We take no Issue with .Blghers proof referred to above,
Thus, to find the evolution from initial conditiofa), we can but we emphasize its use kit in distribution convergence.

determine the evolution fronc), and then subtract it from This kind of convergence is the least restrictive kind of con-
(b). The long time evolution frén@c) can be found by con- vergence considered within the context of probability and
sidering the time at which particles are scattered. Consideptatistics. A proof of convergence in Q|str|but|on implies qnly

for example, the scalloped channel, Fi¢gd2), and a particle the ability to calculate the expectation values of functions
with a small initial 6,. Suppose the particle is located in the that _rem_am_bounded. The convergence required b_y a limit in
channel at a distancax from the boundary of the channel dlstnbutpn is only strong enough to _allow calculation of the

with which it will collide [left or right vertical dashed line in €XPectations of functions that remain bound@§]. There-

Fig. 1(d2)]. If Ax<vtsinf=vtf,, the particle scatters: if fore the convergence of Bleher’s pdf is not strong enough to

AX>0utd,, it does not scatter. Since the particles we areaIIow the moments of the distribution to be calculated. As a

. q . e
considering are in the chann@dix<W, every particle with reuiilgao(f] rt|hifot)ror:\?v;vzli?fztrgnfléﬁsstﬁgjzE.;[g"vsvi?r]: tt?]i dslztr:e
0o>WI/(vt) must have scattered at least once. We assum !

R . imit in distribution can have very different moments.
t.hatt>W/(U. Omad=to SmceHma_X_ls small, the scattered par The fact that Bleher is able to accuratéhccording to our
ticles contribute a small positive value of ordéf,, to

~ ] - ) ] simulation$ calculate the second and lower moments of the
Pe(6,) in 0<60=<2m. ThusP.(0,t) is small(i.e., of order  gisplacement distribution suggests that his result can be
Omax) for 6=>W/vt. For §o<Ax/(vt), t>1,, the particle has  gyrengthened to “convergence gth mean” which is satis-
not yet scattered. Assuming that the initial spatial distributiongeq for a sequenci,, if the expectation value giX,— X|
of particles in the channel is uniform, the fraction of particles_, g qgn_ 0. Convergence igth mean also implies that the
with initial angle 6, that have scattered iuvt/W. Thus expectation value dfX,|P limits to the expectation value of
R |X|P for 1<p=q [20]. Thus our results are consistent with
Pc(6,0)(1—gvt/W) for §<Wi(vt), convergence imth mean to Bleher’s distribution fay=2,
for 6>W/(vt), but rule out convergence for any higher valuegof
(25 The inapplicability of Bleher’s result explains the discrep-
ancy between Eqg2)—(4) and the resul{|r|%)~ (t Int)¥?

where we have neglected the small, orég,, contribution  one would find by mistakenly calculating moments using
to P.(6,t) from scattered particles. Subtractifg from P,  Bleher’s pdf. Equation$2)—(4) also differ from normal dif-
as illustrated in Fig. 7, we obtain the time asymptotic form infusion, {|r|9)~t%2, as well as from the result suggested in
Fig. 5 and Eq(19). Ref.[21].

P.(6,t)=

021110-6
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In conclusion, our two main results are as follows. (Fig. 5 for the billiards of Figs. 1a), 1(b), 1(c), 1(d2), but is
(@ The momentgr?) scale ag”a with y, given by Eq.  different (Fig. 4) for the billiard of Fig. 1d1).

(4) for any initial bounded distribution|P(x,y, 8,0)|<K,

that is zero outside some finite regifin particular, Eq.(4)

still applies if the initial distribution has no particles with ACKNOWLEDGMENTS

infinite flights].

(b) If the initial distribution has no particles in@interval This work was supported by the Office of Naval Research
about a direction of infinitely long flightsay #=0), then (Physics and by the National Science Foundatié@rant
P(6,t)=/xP(xy,0,t) approaches a time-invariant scaling Nos. DMS-0104087 and PHY-0098633Ve thank L. Buni-
form P(¢), where¢= 6t andP(¢) is universally the same movich and J. R. Dorfman for discussion.
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